
Enabling Complex Queries to Drug Information Sources

through Functional Composition

Lee Peters
a

, Jonathan Mortensen
b

, Thang Nguyen
a

, Olivier Bodenreider
a

a

 National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

b

 Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA 94305

Abstract

Our objective was to enable an end-user to create complex

queries to drug information sources through functional com-

position, by creating sequences of functions from application

program interfaces (API) to drug terminologies. The devel-

opment of a functional composition model seeks to link func-

tions from two distinct APIs. An ontology was developed using

Protégé to model the functions of the RxNorm and NDF-RT

APIs by describing the semantics of their input and output. A

set of rules were developed to define the interoperable condi-

tions for functional composition. The operational definition

of interoperability between function pairs is established by

executing the rules on the ontology. We illustrate that the

functional composition model supports common use cases,

including checking interactions for RxNorm drugs and dep-

loying allergy lists defined in reference to drug properties in

NDF-RT. This model supports the RxMix application

(http://mor.nlm.nih.gov/RxMix/), an application we developed

for enabling complex queries to the RxNorm and NDF-RT

APIs.

Keywords:

RxNorm, NDF-RT, application programming interface, web

service composition, complex queries.

Introduction

Biomedical terminologies are important knowledge sources

for many aspects of biomedical research and healthcare [1, 2].

In particular, standard terminologies, such as SNOMED CT,

LOINC, and RxNorm, play a crucial role in health

information exchange and the certification of electronic health

record technology, commonly referred to as “meaningful use”

[3, 4]. Access to biomedical terminologies is either direct,

interactive access by a user through a browser, or access by a

software application through an application programming

interface (API).

Many browsers have been developed to access biomedical

terminologies. For example, there are over twenty browsers

for SNOMED CT [5]. Biomedical terminologies can also be

accessed through repositories, such as the National Library of

Medicine’s Unified Medical Language System (UMLS) [6]

and the National Center for Biomedical Ontology’s BioPortal

[7]. The UMLS and BioPortal both offer web-based browsers

through which users can find codes for a given biomedical

term, navigate hierarchical and other relations, and explore

mappings across terminologies.

In order to support access to biomedical terminologies by

software applications, application programming interfaces

(APIs) have been developed, often based on web services.

These APIs are a key component of health information

technologies, including “meaningful use”, as they mediate

access to standard terminologies through transport standards,

such as the Simple Object Access Protocol (SOAP) and

REpresentational State Transfer (REST) architecture.

Examples of APIs to biomedical terminologies include the

UMLS Terminology Services API (SOAP-based) [8], the

BioPortal API (RESTful) [9], and the APIs to drug

information sources developed for RxNav (SOAP-based and

RESTful) [10]. APIs to biomedical terminologies have been

developed independently of one another and are generally

poorly interoperable. Standardization of terminology services

by standard development organizations, such as the Object

Management Group (OMG) and Health Level 7 (HL7) is

underway through the specification of Common Terminology

Services 2.0 (CTS2) [11].

Terminology APIs generally offer a set of basic functions that

can be used and combined by a user to obtain relevant

terminological information. Typical functions include finding

the code associated with a string, accessing the properties of a

concept, getting the list of related concepts for a given

relationship, and getting the list of codes in a given

terminology. API developers do not normally offer functions

for complex queries because they rarely know in advance all

the use cases for the API. While simple functions offer the

best chances for reuse, composing complex queries remains

challenging for users, because it requires higher programming

skills than access to simple functions, and frameworks for

composing web services are not available for most APIs.

The objective of this work is to enable an end-user to create

complex queries to drug information sources through

functional composition. In practice, we propose to allow users

to specify and execute a sequence of web service functions. In

our typical scenario, users select functions from two different

web services to drug information sources – RxNorm API and

NDF-RT API, and specify a “workflow” of operations to

execute in sequence. An ontology, which specifies web

service function interoperability, facilitates the workflow

creation process in our application.

For example, suppose an application needed to find all the

brand name products available for a given generic drug,

whose identity is known by the FDA unique ingredient

identifier code (UNII_CODE). To do this using the RxNorm

API
4

, the following steps would be performed (SOAP API

functions listed in parenthesis).

MEDINFO 2013
C.U. Lehmann et al. (Eds.)

© 2013 IMIA and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-289-9-692

692

Stud Health Technol Inform (Proc Medinfo) 2013;192:692-696.

1. Translate the UNII_CODE into an RxNorm identifier

(findRxcuiById).

2. Find the related branded drugs

(getRelatedByType).

The result returned in the first step is an RxNorm concept

identifier (RxCUI), which is used in the second step as a

calling argument to the API function getRelatedByType.

This function returns related RxNorm concepts from the

RxCUI. By enabling functional composition, we make this

example workflow readily available to end-users.

Background

Web service composition

We considered a number of existing web service annotation

and composition frameworks to help define the function

composition model which was introduced above.

• Semantic Annotations for WSDL and XML Schema

(SAWSDL) is a technical recommendation published

by the World Wide Web Consortium (W3C) in 2007

in the context of Semantic Web Framework [12].

The specification enables semantic annotations for

Web services using and building on the existing

extensibility framework of WSDL. However,

SAWSDL has not gained wide use, nor does it

provide a means for composition.

• SSWAP (Simple Semantic Web Architecture and

Protocol) aims to combine web services and semantic

web technologies to enable high-throughput

discovery, assessment, and integration of data and

services between distributed parties [13]. Semantic

Web ontologies encoded in OWL are used to

describe information about a web service such as the

service category, types of input the service

consumes, and the types of output the service

produces. Retrofitting our web services to meet

SSWAP compliance was not considered feasible. So

far, SSWAP has only been adopted by a small

number of bioinformatics resources.

• The Semantic Automated Discovery and Integration

(SADI) is a set of standards-compliant best practices

that simplify interoperability between semantic web

services [14]. Using Semantic Web technologies,

SADI services consume and produce OWL classes.

While SADI is directly compatible with web services

standards, it is best suited to the development of new

web services, for which it provides guidelines.

Retrofitting our web services to meet SADI

compliance was not an option in our case.

• Finally, the workflow application Taverna [15] does

not provide any type of semantic validation.

We chose to develop an OWL ontology that describes the web

services we have developed for the RxNorm and NDF-RT

drug information sources. As with SSWAP and SADI, this

ontology describes the semantics of the input and output of

each function. Unlike other frameworks, however, this

ontology is only used as background knowledge for our web

services composition application, not in the payload of our

web services, which remains unchanged.

Drug information sources

RxNorm is a standardized nomenclature for medications

produced and maintained by the U.S. National Library of

Medicine (NLM) in cooperation with proprietary vendors

[16]. RxNorm concepts are linked by NLM to multiple drug

identifiers for each of the commercially available drug

databases within the UMLS
®

 Metathesaurus
®

. In addition to

integrating names from existing drug vocabularies, RxNorm

creates standard names for clinical drugs. The RxNorm API

provides functionality to access the RxNorm data set,

including mapping from identifiers of other drug vocabularies

and identification of clinical and branded drug concepts

through a set of named relationships [10]. The SOAP version

of the API contains 28 functions with equivalent functionality

in a RESTful API implementation.

National Drug File Reference Terminology (NDF-RT) is a

concept oriented terminology whose concepts are organized

into taxonomies [17]. In NDF-RT™, generic ingredients or

combinations thereof are described in terms of their active

ingredients, mechanisms of action, physiologic effects, and

therapeutics (indications and contraindications). Orderable

(clinical) drug products inherit the descriptions of their

generic ingredients, and are further described by local (VHA)

drug classification, strength, units, and dose forms. The

NDF-RT API contains functionality to access the hierarchy

of data associated with ingredients and clinical drugs [10].

Methods

Principles for web service composition. Our primary focus

in developing a web service composition model is to

accurately determine the interoperability between functions.

For two functions to be interoperable, one function must

produce as output an element or structure that semantically

matches the input needed by another function. By

semantically representing the function inputs and outputs, and

then applying a set of matching rules to the representations,

the interoperability between functions can be discovered.

Modeling web services functions in the ontology. To model

the web services functions, we developed an ontology using

Protégé. The main focus of the ontology is the description of

functions in a web service. The following tables describe the

components (Table 1) and properties (Table 2) of the

ontology.

Table 1- List of components in the interoperability ontology.

Components/classes Description

service group of functions, may have a set of

sources and specific IDs. Example:

RxNorm API

function a specific function of a service, has

input and output parameters.

Example: findRxcuiById

parameter semantically described characteristics

of input and output of a function.

Example: RxCUI

source certain vocabularies a service may

have. Example: RxNorm

workflow_element a container to describe a unit in a

workflow, each containing a function

and set of data annotations

L. Peters et al. / Enabling Complex Queries to Drug Information Sources Through Functional Composition 693

Table 2- List of properties in the interoperability ontology.

Properties Description

has_function relates a service to a function

has_id relates a source to an ID

has_initial_output relates the first workflow element (the

user input) to the annotation of the input

has_input relates a function to expected inputs or

relates a workflow element to actual

data inputs

has_member relates a user_defined parameter to other

parameters

has_output relates a function to an output parameter

has_source relates a service to a source

interoperable_with relates a function to another function

next_element points a workflow element to the next

workflow element

previous_element points a workflow element to the

previous workflow element

provided_by relates a function to a service

provides relates a service to a function

Modeling web services composition through rules. To

supplement the ontology, we developed a set of rules to

determine the semantic interoperability of the functions for

web service composition as presented earlier. The rules are

listed in Table 3. Note: interoperability is one-directional.

Table 3- List of rules defining interoperability among func-

tions.

Rules – Given: a function A might be interoperable with

function B, potentially across APIs (services)

 If the input of B matches the output of A, then A is potentially

interoperable with B

 If A has an output composed of members (a non-primitive

output), then A also has as output those members (transitively)

 If the output of A is a general ID, the input of B is specific ID,

and the set of potential IDs for A (inferred through the sources

of A’s service) contain the specific ID of B, then A is poten-

tially interoperable with B

If the output of A is a specific ID and the input to B is a

general ID, and the potential IDs for B (inferred through the

sources of A’s service) contain the specific ID of A, then A is

potentially interoperable with B

Instantiating the model and inferring interoperability

relations. Web services are modeled semantically utilizing the

framework provided above. In the ontology, the model is

described using classes. The specific function parameters are

instances of the classes. The properties provide the

relationships between classes and are represented as triples. In

our model for example:

“RxNorm API” “has_function” “findRxcuiByID”

“findRxcuiById” “has_input” “id_type”

“findRxcuiById” “has_input” “id”

“findRxcuiById” “has_output” “RxCUI”

“RxNorm API” “has_function” “getRelatedByType”

“getRelatedByType” “has_input” “RxCUI”

The above example provides a representation of the fact that

the RxNorm API contains the functions findRxcuiById

and getRelatedByType, and describes the inputs and

outputs of findRxcuiById and an input of

getRelatedByType.

Once all the functions and the properties are specified in the

ontology, then the rules are applied to generate a set of

inferred relations (triples). The inferred relations include the

identification of the interoperability between two functions.

In our example above, the following triple is generated:

“findRxcuiById” “interoperable_with” “getRelatedByType”

The triples of the ontology are stored in a Virtuoso [19]

database, and a set of API functions was developed to access

this data, including one function to extract all the

interoperability relations.

Use Cases

Our web service composition model supports a number of

common use cases. Most use cases involve the use of more

than one API but complex queries within one API are also

possible. Several use cases suggested by our users are listed

below. Up until now, implementation of the use cases

required ad hoc programming for web service composition,

and was a hindrance to the use of complex queries.

Finding clinical drugs which may cause allergic reactions.

In this use case, a user is interested in finding all the clinical

drugs known in RxNorm that contain an ingredient class (ex-

ample: penicillins) which a patient might be allergic to. A

workflow can be constructed from the API functions in NDF-

RT and RxNorm APIs.

1. findConceptsByName from NDF-RT API to

identify the ingredient class

2. findChildConcepts from NDF-RT API to iden-

tify all the children of the ingredient class

3. getRelatedConceptsByReverseRole from

NDF-RT API, specifying “has_ingredient” as the

role to identify the drug level concepts

4. findRxcuiById from RxNorm API to identify the

RxNorm concept for the ingredient

5. getRelatedByType from RxNorm API, specify-

ing “SCD” as the term type, to identify the clinical

drugs associated with the ingredient.

Example: Find the clinical drugs containing hydantoins (the

allergic condition). The output of this workflow is a list of 49

clinical drugs from RxNorm, including drugs containing al-

lantoin, dantrolene, ethotoin, fosphenytoin, mephenytoin, and

phenytoin (for example “Phenytoin 30 MG Oral Capsule”) .

Finding interactions to clinical drugs. A user wishes to up-

date the list of drug interactions to clinical drugs specified by

RxCUIs. Since the list of clinical drugs is old, a check needs

to be made to see if these drugs are still active or have been

remapped into new concepts in RxNorm. The workflow of

functions would use both the RxNorm and NDF-RT APIs.

1. getRxcuiStatus from RxNorm API to determine

if the concept is still active or has been remapped

2. getRelatedByType from RxNorm API to get the

ingredients in the clinical drug

L. Peters et al. / Enabling Complex Queries to Drug Information Sources Through Functional Composition694

3. findConceptsById from NDF-RT API to get

the NDF-RT identifiers for the ingredients

4. findDrugInteractions from NDF-RT API to

get the ingredients that interact with the clinical drug

ingredients.

Example: Find the interactions to a sulfamethoxazole 800mg –

trimethoprim 160 mg oral tablet (RxCUI = 198335). The out-

put from the workflow is a list of interactions containing 14

drugs for sulfamethoxazole (for example Dicumarol), and 11

drugs for trimethoprim (for example Warfarin).

Finding ingredients from clinical drugs. One user needs to

determine the NDF-RT ingredient identifier starting from a

clinical drug identified by an RxCUI. The following

operations are performed:

1. A call to the RxNorm API function getRelated-

ByType to get the corresponding ingredient con-

cept(s) related to the clinical drug

2. A call to the NDF-RT API function findCon-

ceptsById to map the RxNorm ingredient con-

cepts to NDF-RT concepts.

3. A call to the NDF-RT API function getCon-

ceptProperties to find those concepts that were

designated as ingredients.

Example: Find the NDF-RT ingredients starting with RxCUI

= 860232. The output of this workflow is the ingredient con-

cepts in NDF-RT for Guaifenesin, Phenylephrine, and Hydro-

codone.

Finding VA classes for clinical dose forms. Another use

case is finding the VA classes for clinical dose forms. For

example: What is the VA class for clofazimine oral tablets

(RxCUI=371567)? A workflow can be constructed using a

web service composition application to answer this question.

1. getRelatedByType from RxNorm API, specify-

ing “SCD” as the term type.

2. findConceptsById from NDF-RT API, specify-

ing “RXCUI” as the Id type.

3. getVaClassOfConcept from NDF-RT API.

Example: Find the VA class for clofazimine oral tablets

(RxCUI = 371567). The output of this workflow is the VA

class “Anti-Infectives, Other”.

Finding brand names from clinical drug strings. Medli-

nePlus Connect [18] uses the RxNorm API to find brand

names associated with clinical drug name strings. A simple

workflow can be constructed to accomplish this.

1. findRxcuiByName from RxNorm API, specify-

ing normalized string search

2. getAllRelated from RxNorm API, to get the re-

lated brand information.

Example: Find the brand information for the name “citalo-

pram 20 mg tablet”. The output of this workflow will return

the brand information for Celexa.

Discussion

Significance

This work is not merely an incremental improvement over the

RxNorm and NDF-RT APIs we have developed in the past

years. From a clinical perspective, it is driven by common use

cases for which complex queries involving multiple API func-

tion calls are required. In our experience, it is difficult for

most users to generate such queries. By guiding users in the

composition process, the web service composition model faci-

litates creating such queries. From a technical perspective, the

fact that the interoperability ontology resides outside the soft-

ware of the web services itself allows for easy maintenance of

both the software and the ontology.

Maintenance

The web service composition model is easily expanded to add

a new function of a web service. This is done by adding the

description of the function (primarily the inputs and outputs)

and executing the rule set to generate the interoperability with

the other functions.

For example, to add the NDF-RT API function

getVAClassMembers, the following steps are performed.

1. The instance of the function class is defined with the

value “getVAClassMembers”.

2. The input for the function is defined: the property

“has_input” has a value of “NUI”

3. The output is defined: the property “has_output”

would have a value of “minimal_concept”. Note that

“minimal_concept” has been previously defined and

“has_members” of “term_type”, “RxCui” and

“Name”.

4. The rules are applied and new operability pairings are

generated. In this case, any function which produces

a NUI as output would be interoperable with

getVAClassMembers. For example,

“getChildConcepts” is “interoperable_with”

“getVAClassMembers”. Similarly, since

getVAClassMembers produces RxCui and a concept

name as output, so any function that receives either

of those as input will be potentially interoperable.

For example, “getVAClassMembers” is

“interoperable_with” “findDrugInteractions”.

Limitations

The web service composition model is not compliant with

broader frameworks like SADI. Because the APIs were well

established with a large client base, we made a conscious

decision not to change them to conform to those frameworks.

In future work we are planning to investigate how our

framework could be made compatible with SADI.

The model produces possible interoperable function pairs, but

these may not be practical pairings. The application using the

interoperable data may need to eliminate some of these pair-

ings for many different reasons.

Application

We have developed and recently released RxMix

(http://mor.nlm.nih.gov/RxMix/), a web service composition

application for enabling complex queries to the RxNorm,

RxTerms and NDF-RT APIs. This application allows biomed-

ical researchers and health professionals to interactively create

complex workflows (i.e. sequences of interoperable API func-

tions) through a graphical user interface,, without having to

write programs. Workflow creation and validation is sup-

ported effectively by the web service composition model (and

ontology) we have developed. Once created, these workflows

can be executed on lists of entities (e.g., find brand names for

a list of NDC codes). Figure 1 shows the workflow for the

“allergy” use cases.

L. Peters et al. / Enabling Complex Queries to Drug Information Sources Through Functional Composition 695

Figure 1- Example of web service composition workflow in

the RxMix application.

Conclusions

We proposed a web service composition model for the

RxNorm and NDF-RT APIs. This model enables an end-user

to create complex queries to drug information sources through

functional composition, by creating sequences of functions

from application program interfaces (API) to these drug

terminologies. We illustrate that the functional composition

model supports common use cases, including checking

interactions for RxNorm drugs and deploying allergy lists

defined in reference to drug properties in NDF-RT.

Acknowledgments

This research was supported in part by the Intramural Re-

search Program of the National Institutes of Health, National

Library of Medicine (NLM).

References

[1] Bodenreider O. Biomedical ontologies in action: role in

knowledge management, data integration and decision

support. Yearb Med Inform 2008:67-79

[2] Cimino JJ, Zhu X. The practical impact of ontologies on

biomedical informatics. Yearb Med Inform 2006:124-35

[3] Blumenthal D, Tavenner M. The "meaningful use"

regulation for electronic health records. N Engl J Med

2010;363(6):501-4

[4] Health and Human Services Department. Health

Information Technology: Standards, Implementation

Specifications, and Certification Criteria for Electronic

Health Record Technology, 2014 Edition; Revisions to

the Permanent Certification Program for Health

Information Technology: A Proposed Rule by the Health

and Human Services Department on 03/07/2012. Federal

Register 2012:13832-13885

https://federalregister.gov/a/2012-4430.

[5] Rogers J, Bodenreider O. SNOMED CT: Browsing the

browsers. Proceedings of the Third International

Conference on Knowledge Representation in Medicine

(KR-MED 2008) 2008:30-36 (electronic proceedings:

http://ceur-ws.org/Vol-410/)

[6] Bodenreider O. The Unified Medical Language System

(UMLS): Integrating biomedical terminology. Nucleic

Acids Res 2004;32 Database issue:D267-70

[7] Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C,

Tudorache T, et al. BioPortal: enhanced functionality via

new Web services from the National Center for

Biomedical Ontology to access and use ontologies in

software applications. Nucleic Acids Res 2011;39(Web

Server issue):W541-5

[8] National Library of Medicine. UMLS Terminology

Services. https://uts.nlm.nih.gov/.

[9] National Center for Biomedical Ontology. BioPortal.

http://bioportal.bioontology.org/.

[10] National Library of Medicine. RxNav.

http://rxnav.nlm.nih.gov/.

[11] Object Management Group. CTS2. 2011

http://www.omg.org/spec/CTS2/1.0/Beta1/.

[12] World Wide Web Consortium. Semantic Annotations for

WSDL and XML Schema.

http://www.w3.org/TR/sawsdl/.

[13] University of Arizona. Simple Semantic Web

Architecture and Protocol. http://sswap.info/.

[14] Wilkinson MD, Vandervalk B, McCarthy L. The

Semantic Automated Discovery and Integration (SADI)

Web service Design-Pattern, API and Reference

Implementation. J Biomed Semantics 2011;2(1):8

[15] Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR,

Li P, et al. Taverna: a tool for building and running

workflows of services. Nucleic Acids Res 2006;34(Web

Server issue):W729-32

[16] Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R.

Normalized names for clinical drugs: RxNorm at 6 years.

J Am Med Inform Assoc 2011;18(4):441-8

[17] Veterans Health Administration. NDF-RT. In; 2010

http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-

RT%20Documentation.pdf.

[18] National Library of Medicine. MedlinePlusConnect.

http://www.nlm.nih.gov/medlineplus/connect/overview.ht

ml.

[19] Virtuoso. http://docs.openlinksw.com/virtuoso/

Address for correspondence

Olivier Bodenreider -- obodenreider@mail.nih.gov

L. Peters et al. / Enabling Complex Queries to Drug Information Sources Through Functional Composition696

